

Welcome to nlcontrol’s documentation!

Nlcontrol is a comprehensive library for simulating nonlinear control loops with Python. The toolbox is developed to be used by people who are not shy to dive into Python code, as well as for users who are just interested in results.

The toolbox is far from complete, so contribute your own systems and controllers, based on the base classes. This allows easy integration in the closed loop class.

Note

This module is originally developed in the Dynamical Systems & Control group of Ghent University.

contents:

	Get Started
	Installation

	Usage

	API
	The Idea

	The Docs

	Want to contribute?
	Contribute - Git workflow

	License

	Contact

Indices and tables

	Index

	Module Index

	Search Page

Get Started

Contents

	Get Started

	Installation

	pip

	Current Release

	Past Releases

	Development Source

	Usage

Installation

The installation procedure requires Python 3. Some additional packages are required and are installed upon installation of the nlcontrol. Currently, only pip is available.

pip

If you use pip you can install the package as follows:

pip install nlcontrol

Warning

the dependency module python-control [https://python-control.readthedocs.io/] has an optional dependency slycot, which should be installed separately. More info can be found here [https://python-control.readthedocs.io/en/0.8.3/intro.html#installation].

Current Release

	2020-10-07 nlcontrol-1.0.2.tar.gz [https://github.com/jjuch/nlcontrol/releases/download/v1.0.2/nlcontrol-1.0.2.tar.gz]

Past Releases

	2020-10-01 nlcontrol-1.0.1.tar.gz [https://github.com/jjuch/nlcontrol/releases/download/v1.0.1/nlcontrol-1.0.1.tar.gz]

Development Source

The main repository for nlcontrol is located on github at
https://github.com/jjuch/nlcontrol.

You can obtain a copy of the active source code by issuing the following
command

git clone https://github.com/jjuch/nlcontrol.git

Usage

Import the module in your Python code by using the following statement:

import nlcontrol

To import specific parts of the nlcontrol module use the following statement:

from nlcontrol import < *what-you-want-to-import* >

API

Here, you can find all information on the different classes, definitions, etc. of the nlcontrol module. There are three main classes: SystemBase, ControllerBase, and ClosedLoop. Next to these base classes, there are more advanced system and controller classes. This list is far from completed. If you created a new controller or system based on the base classes, do not hesitate to contribute it to this toolbox to help humankind.

The Idea

The advantage of using this SystemBase and ControllerBase classes is that it can easily be implemented in a closed loop configuration with another SystemBase and/or controllerBase object.

This toolbox is strongly based on the SimuPy [https://simupy.readthedocs.io/] module. The contribution of this module is to create a more accessible nonlinear control toolbox, which can be used by proficient Python programmers as well as for users who do not want to focus on programming at all.

The Docs

	Systems
	Base System

	Specific Systems

	Utilities

	Controllers
	Base Controller

	Typical Controllers

	Statefull Controllers

	Closed Loop
	Basis

	Building blocks

Systems

Base System

	
class nlcontrol.systems.system.SystemBase(states, inputs, sys=None)

	Bases: object

Returns a base structure for a system with outputs, optional inputs, and optional states. The system is defines by it state equations (optional):

\[\frac{dx(t)}{dt} = h(x(t), u(t), t)\]

with x(t) the state vector, u(t) the input vector and t the time in seconds. Next, the output is given by the output equation:

\[y(t) = g(x(t), u(t), t)\]

A SystemBase object contains several basic functions to manipulate and simulate the system.

	Parameters

	
	statesstring or array-like
	if states is a string, it is a comma-separated listing of the state names. If states is array-like it contains the states as sympy’s dynamic symbols.

	inputsstring or array-like
	if inputs is a string, it is a comma-separated listing of the input names. If inputs is array-like it contains the inputs as sympy’s dynamic symbols.

	systemsimupy’s DynamicalSystem object (simupy.systems.symbolic), optional
	the object containing output and state equations, default: None.

Examples

	
	Statefull system with one state, one input, and one output:
	>>> from simupy.systems.symbolic import MemorylessSystem, DynamicalSystem
>>> from sympy.tensor.array import Array
>>> states = 'x'
>>> inputs = 'u'
>>> sys = SystemBase(states, inputs)
>>> x, xdot, u = sys.create_variables()
>>> sys.system = DynamicalSystem(state_equation=Array([-x + u1]), state=x, output_equation=x, input_=u1)

	
	Statefull system with two states, one input, and two outputs:
	>>> states = 'x1, x2'
>>> inputs = 'u'
>>> sys = SystemBase(states, inputs)
>>> x1, x2, x1dot, x2dot, u = sys.create_variables()
>>> sys.system = DynamicalSystem(state_equation=Array([-x1 + x2**2 + u, -x2 + 0.5 * x1]), state=Array([x1, x2]), output_equation=Array([x1 * x2, x2]), input_=u)

	
	Stateless system with one input:
	>>> states = None
>>> inputs = 'w'
>>> sys = SystemBase(states, inputs)
>>> w = sys.create_variables()
>>> sys.system = MemorylessSystem(input_=Array([w]), output_equation= Array([5 * w]))

	
	Create a copy a SystemBase object `sys’ and linearize around the working point of state [0, 0] and working point of input 0 and simulate:
	>>> new_sys = SystemBase(sys.states, sys.inputs, sys.system)
>>> new_sys_lin = new_sys.linearize([0, 0], 0)
>>> new_sys_lin.simulation(10)

	Attributes

	
	block_configuration
	Returns info on the systems: the dimension of the inputs, the states, and the output.

	output_equation
	expression containing dynamicsymbols

	state_equation
	expression containing dynamicsymbols

	system
	simupy's DynamicalSystem

Methods

	create_variables([input_diffs, states])

	Returns a tuple with all variables.

	linearize(working_point_states[, …])

	In many cases a nonlinear system is observed around a certain working point.

	parallel(sys_append)

	A system is generated which is the result of a parallel connection of two systems.

	series(sys_append)

	A system is generated which is the result of a serial connection of two systems.

	simulation(tspan[, number_of_samples, …])

	Simulates the system in various conditions.

	
property block_configuration

	the dimension of the inputs, the states, and the output. This property is mainly intended for debugging.

	Type

	Returns info on the systems

	
create_variables(input_diffs: bool = False, states=None) → tuple

	Returns a tuple with all variables. First the states are given, next the derivative of the states, and finally the inputs, optionally followed by the diffs of the inputs. All variables are sympy dynamic symbols.

	Parameters

	
	input_diffsboolean
	also return the differentiated versions of the inputs, default: false.

	statesarray-like
	An alternative list of states, used by more complex system models, optional. (see e.g. EulerLagrange.create_variables)

	Returns

	
	variablestuple
	all variables of the system.

Examples

	Return the variables of `sys’, which has two states and two inputs and add a system to the SytemBase object:

>>> from sympy.tensor.array import Array
>>> from simupy.systems.symbolic import DynamicalSystem
>>> x1, x2, x1dot, x2dot, u1, u2, u1dot, u2dot = sys.create_variables(input_diffs=True)
>>> state_eq = Array([-5 * x1 + x2 + u1**2, x1/2 - x2**3 + u2])
>>> output_eq = Array([x1 + x2])
>>> sys.system = DynamicalSystem(input_=Array([u1, u2], state=Array([x1, x2], state_equation=state_eq, output_equation=output_eq)

	
linearize(working_point_states, working_point_inputs=None)

	In many cases a nonlinear system is observed around a certain working point. In the state space close to this working point it is save to say that a linearized version of the nonlinear system is a sufficient approximation. The linearized model allows the user to use linear control techniques to examine the nonlinear system close to this working point. A first order Taylor expansion is used to obtain the linearized system. A working point for the states is necessary, but the working point for the input is optional.

	Parameters

	
	working_point_stateslist or int
	the state equations are linearized around the working point of the states.

	working_point_inputslist or int
	the state equations are linearized around the working point of the states and inputs.

	Returns

	
	sys_lin: SystemBase object
	with the same states and inputs as the original system. The state and output equation is linearized.

	sys_control: control.StateSpace object
	

Examples

	
	Print the state equation of the linearized system of `sys’ around the state’s working point x[1] = 1 and x[2] = 5 and the input’s working point u = 2:
	>>> sys_lin, sys_control = sys.linearize([1, 5], 2)
>>> print('Linearized state equation: ', sys_lin.state_equation)

	
property output_equation

	expression containing dynamicsymbols

The output equation contains sympy’s dynamicsymbols [https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#dynamicsymbols].

	
parallel(sys_append)

	A system is generated which is the result of a parallel connection of two systems. The inputs of this object are connected to the system that is placed in parallel and a new system is achieved with the output the sum of the outputs of both systems in parallel. Notice that the dimensions of the inputs and the outputs of both systems should be equal.

	Parameters

	
	sys_appendSystemBase object
	the system that is added in parallel.

	Returns

	
	A SystemBase object with the parallel system’s equations.
	

Examples

	
	Place ‘sys2’ in parallel with ‘sys1’ and show the inputs, states, state equations and output equations:
	>>> parallel_sys = sys1.parallel(sys2)
>>> print('inputs: ', parallel_sys.system.input_)
>>> print('States: ', parallel_sys.system.state)
>>> print('State eqs: ', parallel_sys.system.state_equation)
>>> print('Output eqs: ', parallel_sys.system.output_equation)

	
series(sys_append)

	A system is generated which is the result of a serial connection of two systems. The outputs of this object are connected to the inputs of the appended system and a new system is achieved which has the inputs of the current system and the outputs of the appended system. Notice that the dimensions of the output of the current system should be equal to the dimension of the input of the appended system.

	Parameters

	
	sys_appendSystemBase object
	the system that is placed in a serial configuration. ‘sys_append’ follows the current system.

	Returns

	
	A SystemBase object with the serial system’s equations.
	

Examples

	
	Place ‘sys1’ behind ‘sys2’ in a serial configuration and show the inputs, states, state equations and output equations:
	>>> series_sys = sys1.series(sys2)
>>> print('inputs: ', series_sys.system.input_)
>>> print('States: ', series_sys.system.state)
>>> print('State eqs: ', series_sys.system.state_equation)
>>> print('Output eqs: ', series_sys.system.output_equation)

	
simulation(tspan, number_of_samples=100, initial_conditions=None, input_signals=None, plot=False, custom_integrator_options=None)

	Simulates the system in various conditions. It is possible to impose initial conditions on the states of the system. A specific input signal can be applied to the system to check its behavior. The results of the simulation are numerically available. Also, a plot of the states, inputs, and outputs is available. To simulate the system scipy’s ode is used if the system has states. Both the option of variable time-step and fixed time step are available. If there are no states, a time signal is applied to the system.
TODO: output_signal -> a disturbance on the output signal.

	Parameters

	
	tspanfloat or list-like
	the parameter defines the time vector for the simulation in seconds. An integer indicates the end time. A list-like object with two elements indicates the start and end time respectively. And more than two elements indicates at which time instances the system needs to be simulated.

	number_of_samplesint, optional
	number of samples in the case that the system is stateless and tspan only indicates the end and/or start time (span is length two or smaller), default: 100

	initial_conditionsint, float, list-like object, optional
	the initial conditions of the states of a statefull system. If none is given, all are zero, default: None

	input_signalsSystemBase object
	the input signal that is directly connected to the system’s inputs. Preferably, the signals in nlcontrol.signals are used. If no input signal is specified and the system has inputs, all inputs are defaulted to zero, default: None

	plotboolean, optional
	the plot boolean decides whether to show a plot of the inputs, states, and outputs, default: False

	custom_integrator_optionsdict, optional (default: None)
	Specify specific integrator options top pass to integrator_class.set_integrator (scipy ode)`. The options are ‘name’, ‘rtol’, ‘atol’, ‘nsteps’, and ‘max_step’, which specify the integrator name, relative tolerance, absolute tolerance, number of steps, and maximal step size respectively. If no custom integrator options are specified the DEFAULT_INTEGRATOR_OPTIONS are used:

{
 'name': 'dopri5',
 'rtol': 1e-6,
 'atol': 1e-12,
 'nsteps': 500,
 'max_step': 0.0
}

	Returns

	
	A tuple:
	
	-> statefull system :
	
	tndarray
	time vector.

	xndarray
	state vectors.

	yndarray
	input and ouput vectors.

	resSimulationResult object
	A class object which contains information on events, next to the above vectors.

	-> stateless system :
	
	tndarray
	time vector.

	yndarray
	output vectors.

	undarray
	input vectors. Is an empty list if the system has no inputs.

Examples

	
	A simulation of 20 seconds of the statefull system ‘sys’ for a set of initial conditions [x0_0, x1_0, x2_0] and plot the results:
	>>> init_cond = [0.3, 5.7, 2]
>>> t, x, y, u, res = sys.simulation(20, initial_conditions=init_cond)

	
	A simulation from second 2 to 18 of the statefull system ‘sys’ for an input signal, which is a step from 0.4 to 1.3 at second 5 for input 1 and from 0.9 to 1.1 at second 7. Use 1000 nsteps for the integrator. No plot is required:
	>>> from nlcontrol.signals import step
>>> step_signal = step(step_times=[5, 7], begin_values=[0.4, 0.9], end_values=[1.3, 11])
>>> integrator_options = {'nsteps': 1000}
>>> t, x, y, u, res = sys.simulation([2, 18], input_signals=step_signal, custom_integrator_options=integrator_options)

	
	Plot the stateless signal step from previous example for a custom time axis (a time axis going from 3 seconds to 20 seconds with 1000 equidistant samples in between):
	>>> import numpy as np
>>> time_axis = np.linspace(3, 20, 1000)
>>> t, y, _ = step_signal.simulation(time_axis, plot=True)
Or
>>> t, y, _ = step_signal.simulation([3, 20], number_of_samples=1000, plot=True)

	
	Simulate the stateless system ‘sys_stateless’ with input signal step_signal from the previous examples for 40 seconds with 1500 samples in between and plot:
	>>> t, y, u = sys_stateless.simulation(40, number_of_samples=1500, input_signals=step_signal, plot=True)

	
property state_equation

	expression containing dynamicsymbols

The state equation contains sympy’s dynamicsymbols [https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#dynamicsymbols].

	
property system

	simupy's DynamicalSystem

The system attribute of the SystemBase class. The system is defined using simupy’s DynamicalSystem [https://simupy.readthedocs.io/en/latest/api/symbolic_systems.html#simupy.systems.symbolic.DynamicalSystem].

Specific Systems

	
class nlcontrol.systems.eula.EulerLagrange(states, inputs, sys=None)

	Bases: nlcontrol.systems.system.SystemBase

A class that defines SystemBase object using an Euler-Lagrange formulation:

\[M(x).x'' + C(x, x').x' + K(x)= F(u)\]

Here, x represents a minimal state:

\[[x_1, x_2, ...]\]

the apostrophe represents a time derivative, and u is the input vector:

\[[u_1, u_2, ...]\]

A SystemBase object uses a state equation function of the form:

\[x' = f(x, u)\]

However, as system contains second time derivatives of the state, an extended state x* is necessary containing the minimized states and its first time derivatives:

\[x^{*} = [x_1, x_1', x_2, x_2', ...]\]

which makes it possible to adhere to the SystemBase formulation:

\[x^{*'} = f(x^{*}, u)\]

	Parameters

	
	statesstring or array-like
	if states is a string, it is a comma-separated listing of the state names. If states is array-like it contains the states as sympy’s dynamic symbols.

	inputsstring or array-like
	if inputs is a string, it is a comma-separated listing of the input names. If inputs is array-like it contains the inputs as sympy’s dynamic symbols.

	syssimupy’s DynamicalSystem object (simupy.systems.symbolic), optional
	the object containing output and state equations, default: None.

Examples

	
	Create a EulerLagrange object with two states and two inputs:
	>>> states = 'x1, x2'
>>> inputs = 'u1, u2'
>>> sys = EulerLagrange(states, inputs)
>>> x1, x2, dx1, dx2, u1, u2, du1, du2 = sys.create_variables(input_diffs=True)
>>> M = [[1, x1*x2],
 [x1*x2, 1]]
>>> C = [[2*dx1, 1 + x1],
 [x2 - 2, 3*dx2]]
>>> K = [x1, 2*x2]
>>> F = [u1, 0]
>>> sys.define_system(M, C, K, F)

	
	Get the Euler-Lagrange matrices and the state equations:
	>>> M = sys.inertia_matrix
>>> C = sys.damping_matrix
>>> K = sys.stiffness_matrix
>>> F = sys.force_vector
>>> xdot = sys.state_equation

	
	Linearize an Euler-Lagrange system around the state’s working point [0, 0, 0, 0] and the input’s working point = [0, 0] and simulate for a step input and initial conditions
	>>> sys_lin, _ = sys.linearize([0, 0, 0, 0], [0, 0])
>>> from nlcontrol.signals import step
>>> step_sgnl = step(2)
>>> init_cond = [1, 2, 0.5, 4]
>>> sys_lin.simulation(5, initial_conditions=init_cond, input_signals=step_sgnl, plot=True)

	Attributes

	
	block_configuration
	Returns info on the systems: the dimension of the inputs, the states, and the output.

	damping_matrix
	sympy Matrix

	force_vector
	sympy Matrix

	inertia_matrix
	sympy Matrix

	output_equation
	expression containing dynamicsymbols

	state_equation
	expression containing dynamicsymbols

	stiffness_matrix
	sympy Matrix

	system
	simupy's DynamicalSystem

Methods

	check_symmetry(matrix)

	Check if matrix is symmetric.

	create_state_equations()

	As the system contains a second derivative of the states, an extended state should be used, which contains the first derivative of the states as well.

	create_variables([input_diffs])

	Returns a tuple with all variables.

	define_system(M, C, K, F)

	Define the Euler-Lagrange system using the differential equation representation:

	linearize(working_point_states[, …])

	In many cases a nonlinear system is observed around a certain working point.

	parallel(sys_append)

	A system is generated which is the result of a parallel connection of two systems.

	series(sys_append)

	A system is generated which is the result of a serial connection of two systems.

	simulation(tspan[, number_of_samples, …])

	Simulates the system in various conditions.

	
check_symmetry(matrix) → bool

	Check if matrix is symmetric. Returns a bool.

	Returns

	
	valuebool
	the matrix being symmetric or not.

	
create_state_equations()

	As the system contains a second derivative of the states, an extended state should be used, which contains the first derivative of the states as well. Therefore, the state equation has to be adapted to this new state vector.

	Returns

	
	resultsympy array object
	the state equation for each element in self.states

	
create_variables(input_diffs: bool = False)

	Returns a tuple with all variables. First the states are given, next the derivative of the states, and finally the inputs, optionally followed by the diffs of the inputs. All variables are sympy dynamic symbols.

	Parameters

	
	input_diffsboolean
	also return the differentiated versions of the inputs, default: false.

	Returns

	
	variablestuple
	all variables of the system.

Examples

	
	Return the variables of ‘sys’, which has two states and two inputs and add a system to the EulerLagrange object:
	>>> x1, x2, x1dot, x2dot, u1, u2, u1dot, u2dot = sys.create_variables(input_diffs=True)
>>> M = [[1, x1*x2],
 [x1*x2, 1]]
>>> C = [[2*x1dot, 1 + x1],
 [x2 - 2, 3*x2dot]]
>>> K = [x1, 2*x2]
>>> F = [u1, 0]
>>> sys.define_system(M, C, K, F)

	
property damping_matrix

	sympy Matrix

The matrix represents the damping and coriolis forces. More on sympy’s Matrix [https://docs.sympy.org/latest/modules/matrices/dense.html#matrix-class-reference].

	
define_system(M, C, K, F)

	Define the Euler-Lagrange system using the differential equation representation:

\[M(x).x'' + C(x, x').x' + K(x)= F(u)\]

Here, x is the minimal state vector created in the constructor. The state-space model is generated in the form \(x^{*'} = f(x^*, u)\), with \(x^* = [x_1, dx_1, x_2, dx_2, ...]\), the extended state vector. The output is the minimal state vector.

Note

Use create_variables() for an easy notation of state[i] and dstate[i].

	
property force_vector

	sympy Matrix

The matrix represents the external force or torque vector. This is a non-square matrix. More on sympy’s Matrix [https://docs.sympy.org/latest/modules/matrices/dense.html#matrix-class-reference].

	
property inertia_matrix

	sympy Matrix

The matrix represents the inertia forces and it is checked that it is positive definite and symmetric. More on sympy’s Matrix [https://docs.sympy.org/latest/modules/matrices/dense.html#matrix-class-reference].

	
property stiffness_matrix

	sympy Matrix

The matrix represents the elastic and centrifugal forces. More on sympy’s Matrix [https://docs.sympy.org/latest/modules/matrices/dense.html#matrix-class-reference].

Utilities

	
nlcontrol.systems.utils.read_simulation_result_from_csv(file_name, plot=False)

	Read a csv file created with write_simulation_result_to_csv() containing simulation results. Based on the header it is determined if the results contains input or event vector. There is a possibility to create plot of the data.

	Parameters

	
	file_namestring
	The filename of the csv file, containing the extension.

	plotboolean, optional
	Create a plot, default: False

	Returns

	
	tuple :
	
	tnumpy array
	The time vector.

	xnumpy array
	The state vectors.

	ynumpy array
	The output vectors. Contains the inputs, when the data contains the event vector.

	u or enumpy array
	The input vectors or event vectors. See boolean ‘contains_u’ to know which one.

	contains_uboolean
	Indicates whether the output contains the input or event vector.

Examples

	
	Read and plot a csv file ‘results.csv’ with an input vector:
	>>> t, x, y, u, contains_u = read_simulation_result_from_csv('results.csv', plot=True)
>>> print(contains_u)
 True

	
	Read and plot a csv file ‘results.csv’ with an event vector:
	>>> t, x, y, e, contains_u = read_simulation_result_from_csv('results.csv', plot=True)
>>> print(contains_u)
 False

	
nlcontrol.systems.utils.write_simulation_result_to_csv(simulation_result, file_name=None)

	Write the results of a SimulationResult object (see simupy.BlockDiagram.simulate) to a csv file. This object type is also returned by a SystemBase’s simulation function.

	Parameters

	
	simulation_resultSimulationResult object or list
	Results of a simulation packaged as Simupy’s SimulationResult object or a list which includes the time, input, state, and output vector in this order.

	file_namestring
	The filename of the newly created csv file. Defaults to a timestamp.

Examples

	
	Simulate a SystemBase object called ‘sys’ and store the results:
	>>> t, x, y, u, res = sys.simulation(1)
>>> write_simulation_result_to_csv(res, file_name='use_simulation_result_object')
>>> write_simulation_result_to_csv([t, u, x, y], file_name='use_separate_vectors')

Controllers

Base Controller

	
class nlcontrol.systems.controllers.controller.ControllerBase(states, inputs, sys=None)

	Bases: nlcontrol.systems.system.SystemBase

Returns a base structure for a controller with outputs, optional inputs, and optional states. The controller is an instance of a SystemBase, which is defined by it state equations (optional):

\[\frac{dx(t)}{dt} = h(x(t), u(t), t)\]

with x(t) the state vector, u(t) the input vector and t the time in seconds. Next, the output is given by the output equation:

\[y(t) = g(x(t), u(t), t)\]

	Parameters

	
	statesstring or array-like
	if states is a string, it is a comma-separated listing of the state names. If states is array-like it contains the states as sympy’s dynamic symbols.

	inputsstring or array-like
	if inputs is a string, it is a comma-separated listing of the input names. If inputs is array-like it contains the inputs as sympy’s dynamic symbols.

	systemsimupy’s DynamicalSystem object (simupy.systems.symbolic), optional
	the object containing output and state equations, default: None.

Examples

	
	Statefull controller with one state, one input, and one output:
	>>> from simupy.systems.symbolic import MemorylessSystem, DynamicalSystem
>>> from sympy.tensor.array import Array
>>> st = 'z'
>>> inp = 'w'
>>> contr = ControllerBase(states=st, inputs=inp)
>>> z, zdot, w = contr.create_variables()
>>> contr.system = DynamicalSystem(state_equation=Array([-z + w]), state=z, output_equation=z, input_=w)

	
	Statefull controller with two states, one input, and two outputs:
	>>> st = 'z1, z2'
>>> inp = 'w'
>>> contr = ControllerBase(states=st, inputs=inp)
>>> z1, z2, z1dot, z2dot, w = contr.create_variables()
>>> contr.system = DynamicalSystem(state_equation=Array([-z1 + z2**2 + w, -z2 + 0.5 * z1]), state=Array([z1, z2]), output_equation=Array([z1 * z2, z2]), input_=w)

	
	Stateless controller with one input:
	>>> st = None
>>> inp = 'w'
>>> contr = ControllerBase(states=st, inputs=inp)
>>> w = contr.create_variables()
>>> contr.system = MemorylessSystem(input_=Array([w]), output_equation= Array([5 * w]))

	
	Create a copy a ControllerBase object ‘contr’ and linearize around the working point of state [0, 0] and working point of input 0 and simulate:
	>>> new_contr = ControllerBase(states=contr.states, inputs=contr.inputs, sys=contr.system)
>>> new_contr_lin = new_contr.linearize([0, 0], 0)
>>> new_contr_lin.simulation(10)

	Attributes

	
	block_configuration
	Returns info on the systems: the dimension of the inputs, the states, and the output.

	output_equation
	expression containing dynamicsymbols

	state_equation
	expression containing dynamicsymbols

	system
	simupy's DynamicalSystem

Methods

	create_variables([input_diffs, states])

	Returns a tuple with all variables.

	linearize(working_point_states[, …])

	In many cases a nonlinear system is observed around a certain working point.

	parallel(contr_append)

	A controller is generated which is the result of a parallel connection of two controllers.

	series(contr_append)

	A controller is generated which is the result of a serial connection of two controllers.

	simulation(tspan[, number_of_samples, …])

	Simulates the system in various conditions.

	
parallel(contr_append)

	A controller is generated which is the result of a parallel connection of two controllers. The inputs of this object are connected to the system that is placed in parallel and a new system is achieved with the output the sum of the outputs of both systems in parallel. Notice that the dimensions of the inputs and the outputs of both systems should be equal.

	Parameters

	
	contr_appendControllerBase object
	the controller that is added in parallel.

	Returns

	
	A ControllerBase object with the parallel system’s equations.
	

Examples

	Place ‘contr2’ in parallel with ‘contr1’ and show the inputs, states, state equations and output equations:

>>> parallel_sys = contr1.parallel(contr2)
>>> print('inputs: ', parallel_sys.system.input_)
>>> print('States: ', parallel_sys.system.state)
>>> print('State eqs: ', parallel_sys.system.state_equation)
>>> print('Output eqs: ', parallel_sys.system.output_equation)

	
series(contr_append)

	A controller is generated which is the result of a serial connection of two controllers. The outputs of this object are connected to the inputs of the appended system and a new controller is achieved which has the inputs of the current system and the outputs of the appended system. Notice that the dimensions of the output of the current system should be equal to the dimension of the input of the appended system.

	Parameters

	
	contr_appendControllerBase object
	the controller that is placed in a serial configuration. ‘contr_append’ follows the current system.

	Returns

	
	A ControllerBase object with the serial system’s equations.
	

Examples

	
	Place ‘contr1’ behind ‘contr2’ in a serial configuration and show the inputs, states, state equations and output equations:
	>>> series_sys = contr1.series(contr2)
>>> print('inputs: ', series_sys.system.input_)
>>> print('States: ', series_sys.system.state)
>>> print('State eqs: ', series_sys.system.state_equation)
>>> print('Output eqs: ', series_sys.system.output_equation)

Typical Controllers

	
class nlcontrol.systems.controllers.basic.PID(inputs=w) PID(ksi0, chi0, psi0, inputs=inputs)

	Bases: nlcontrol.systems.controllers.controller.ControllerBase

A nonlinear PID controller can be created using the PID class. This class is based on the ControllerBase object. The nonlinear PID is is based on the input vector w(t), containing sympy’s dynamicsymbols. The formulation is the following:

\[u(t) = \xi_0(w(t)) + \chi_0\left(\int(w(t),t)\right) + \psi_0(w'(t))\]

with \(.'(t)\) indicating the time derivative of the signal. The class object allows the construction of P, PI, PD and PID controllers, by setting chi0 or psi0 to None. The system is based on a MemorylessSystem object from simupy.

	Parameters

	
	argsoptional
	
	ksi0array-like
	A list of P-action expressions, containing the input signal.

	chi0array-like
	A list of I-action expressions, containing the integral of the input signal.

	psi0array-like
	A list of D-action expressions, containing the derivative of the input signal.

	kwargs :
	
	inputsarray-like or string
	if inputs is a string, it is a comma-separated listing of the input names. If inputs is array-like it contains the inputs as sympy’s dynamic symbols.

Examples

	
	Create a classic PD controller with two inputs:
	>>> C = PID(inputs='w1, w2')
>>> w1, w2, w1dot, w2dot = C.create_variables()
>>> kp = 1, kd = 5
>>> ksi0 = [kp * w1, kp * w2]
>>> psi0 = [kd * w1dot, kd * w2dot]
>>> C.define_PID(ksi0, None, psi0)

	
	Same as exercise as above, but with a different constructor:
	>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy import Symbol, diff
>>> w = dynamicsymbols('w1, w2')
>>> w1, w2 = tuple(inputs)
>>> kp = 1, kd = 5
>>> ksi0 = [kp * w1, kp * w2]
>>> psi0 = [kd * diff(w1, Symbol('t')), kd * diff(w2, Symbol('t'))]
>>> C = PID(ksi0, None, psi0, inputs=w)

	
	Formulate a standard I-action chi0:
	>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy import Symbol, integrate
>>> w = dynamicsymbols('w1, w2')
>>> w1, w2 = tuple(inputs)
>>> ki = 0.5
>>> chi0 = [ki * integrate(w1, Symbol('t')), ki * integrate(w2, Symbol('t'))]

	Attributes

	
	D_action
	

	I_action
	

	P_action
	

	block_configuration
	Returns info on the systems: the dimension of the inputs, the states, and the output.

	output_equation
	expression containing dynamicsymbols

	state_equation
	expression containing dynamicsymbols

	system
	simupy's DynamicalSystem

Methods

	create_variables([input_diffs, states])

	Returns a tuple with all variables.

	define_PID(P, I, D)

	Set all three PID actions with one function, instead of using the setter functions for each individual action.

	linearize(working_point_states[, …])

	In many cases a nonlinear system is observed around a certain working point.

	parallel(contr_append)

	A controller is generated which is the result of a parallel connection of two controllers.

	series(contr_append)

	A controller is generated which is the result of a serial connection of two controllers.

	simulation(tspan[, number_of_samples, …])

	Simulates the system in various conditions.

	
property D_action

	!! processed by numpydoc !!

	
property I_action

	!! processed by numpydoc !!

	
property P_action

	!! processed by numpydoc !!

	
define_PID(P, I, D)

	Set all three PID actions with one function, instead of using the setter functions for each individual action. Automatic checking of the dimensions is done as well. The PID’s system arguments is set to a simupy’s MemorylessSystem object, containing the proper PID expressions. Both P, PI, PD and PID can be formed by setting the appropriate actions to None.

	Parameters

	
	Plist or expression
	A list of expressions or an expression defining ksi0.

	Ilist or expression or None
	A list of expressions or an expression defining chi0. If I is None, the controller does not contain an I-action.

	Dlist or expression or None
	A list of expressions or an expression defining psi0. If D is None, the controller does not contain a D-action.

Statefull Controllers

	
class nlcontrol.systems.controllers.eulaC.DynamicController(states=None, inputs=None, sys=None)

	Bases: nlcontrol.systems.controllers.controller.ControllerBase

The DynamicController object is based on the ControllerBase class. A dynamic controller is defined by the following differential equations:

\[\frac{dz(t)}{dt} = A.z(t) - B.f(\sigma(t)) + \eta\left(w(t), \frac{dw(t)}{dt}\right)\]

\[\sigma(t) = C'.z\]

\[u_0 = \phi\left(z(t), \frac{dz(t)}{dt}\right)\]

with z(t) the state vector, w(t) the input vector and t the time in seconds. the symbol ‘ refers to the transpose.

Conditions:

	A is Hurwitz,

	(A, B) should be controllable,

	(A, C) is observable,

	rank(B) = rang (C) = s <= n, with s the dimension of sigma, and n the number of states.

More info on the controller can be found in [1, 2].

	Parameters

	
	statesstring or array-like
	if states is a string, it is a comma-separated listing of the state names. If states is array-like it contains the states as sympy’s dynamic symbols.

	inputsstring or array-like
	if inputs is a string, it is a comma-separated listing of the input names. If inputs is array-like it contains the inputs as sympy’s dynamic symbols. Do not provide the derivatives as these will be added automatically.

	systemsimupy’s DynamicalSystem object (simupy.systems.symbolic), optional
	the object containing output and state equations, default: None.

References

[1] L. Luyckx, The nonlinear control of underactuated mechanical systems. PhD thesis, UGent, Ghent, Belgium, 5 2006.

[2] M. Loccufier, “Stabilization and set-point regulation of underactuated mechanical systems”, Journal of Physics: Conference Series, 2016, vol. 744, no. 1, p.012065.

Examples

	
	Statefull controller with two states, one input, and two outputs:
	>>> inp = 'w'
>>> st = 'z1, z2'
>>> contr = DynamicController(states=st, inputs=inp)
>>> z1, z2, z1dot, z2dot, w, wdot = contr.create_variables()
>>> a0, a1, k1 = 12.87, 6.63, 0.45
>>> b0 = (48.65 - a1) * k1
>>> b1 = (11.79 - 1) * k1
>>> A = [[0, 1], [-a0, -a1]]
>>> B = [[0], [1]]
>>> C = [[b0], [b1]]
>>> f = lambda x: x**2
>>> eta = [[w + wdot], [(w + wdot)**2]]
>>> phi = [[z1], [z2dot]]
>>> contr.define_controller(A, B, C, f, eta, phi)
>>> print(contr)

	Attributes

	
	block_configuration
	Returns info on the systems: the dimension of the inputs, the states, and the output.

	output_equation
	expression containing dynamicsymbols

	state_equation
	expression containing dynamicsymbols

	system
	simupy's DynamicalSystem

Methods

	controllability_linear(A, B)

	Controllability check of two matrices using the Kalman rank condition for time-invariant linear systems [1].

	create_variables([input_diffs, states])

	Returns a tuple with all variables.

	define_controller(A, B, C, f, eta, phi)

	Define the Dynamic controller given by the differential equations:

	hurwitz(matrix)

	Check whether a time-invariant matrix is Hurwitz.

	linearize(working_point_states[, …])

	In many cases a nonlinear system is observed around a certain working point.

	observability_linear(A, C)

	Observability check of two matrices using the Kalman rank condition for time-invariant linear systems [1].

	parallel(contr_append)

	A controller is generated which is the result of a parallel connection of two controllers.

	series(contr_append)

	A controller is generated which is the result of a serial connection of two controllers.

	simulation(tspan[, number_of_samples, …])

	Simulates the system in various conditions.

	
controllability_linear(A, B)

	Controllability check of two matrices using the Kalman rank condition for time-invariant linear systems [1].

Reference:

[1]. R.E. Kalman, “On the general theory of control systems”, IFAC Proc., vol. 1(1), pp. 491-502, 1960. doi.10.1016/S1474-6670(17)70094-8.

	Parameters

	
	Aarray-like
	Size: n x n

	Barray-like
	Size: s x n

	
define_controller(A, B, C, f, eta, phi)

	Define the Dynamic controller given by the differential equations:

\[\frac{dz(t)}{dt} = A.z(t) - B.f(\sigma(t)) + \eta\left(w(t), \frac{dw(t)}{dt}\right)\]

\[\sigma(t) = C'.z\]

\[u_0 = \phi\left(z(t), \frac{dz(t)}{dt}\right)\]

with z(t) the state vector, w(t) the input vector and t the time in seconds. the symbol ‘ refers to the transpose.
Conditions:

	A is Hurwitz,

	(A, B) should be controllable,

	(A, C) is observable,

	rank(B) = rang (C) = s <= n, with s the dimension of sigma, and n the number of states.

HINT: use create_variables() for an easy notation of the equations.

	Parameters

	
	Aarray-like
	Hurwitz matrix. Size: n x n

	Barray-like
	In combination with matrix A, the controllability is checked. The linear definition can be used. Size: s x n

	Carray-like
	In combination with matrix A, the observability is checked. The linear definition can be used. Size: n x 1

	fcallable (lambda-function)
	A (non)linear lambda function with argument sigma, which equals C’.z.

	etaarray-like
	The (non)linear relation between the inputs plus its derivatives to the change in state. Size: n x 1

	phiarray-like
	The (non)linear output equation. The equations should only contain states and its derivatives. Size: n x 1

	
hurwitz(matrix)

	Check whether a time-invariant matrix is Hurwitz. The real part of the eigenvalues should be smaller than zero.

	Parameters

	
	matrix: array-like
	A square matrix.

	
observability_linear(A, C)

	Observability check of two matrices using the Kalman rank condition for time-invariant linear systems [1].

Reference:

[1] R.E. Kalman, “On the general theory of control systems”, IFAC Proc., vol. 1(1), pp. 491-502, 1960. doi.10.1016/S1474-6670(17)70094-8.

	Parameters

	
	Aarray-like
	Size: n x n

	Carray-like
	Size: n x 1

	
class nlcontrol.systems.controllers.eulaC.EulerLagrangeController(D0, C0, K0, C1, f, NA, NB, inputs, nonlinearity_type='stiffness')

	Bases: nlcontrol.systems.controllers.eulaC.DynamicController

The EulerLagrangeController object is based on the DynamicController class. The control equation is:

\[D0.p'' + C0.p' + K0.p + C1.f(C1^T.p) + N0.w' = 0\]

The apostrophe represents a time derivative, \(.^T\) is the transpose of the matrix.

The output equation is:

\[{NA}^T.D0^{-1}.K0^{-1}.D0.K0.p - {NB}^T.D0^{-1}.K0^{-1}.D0.K0.p'\]

More info on the controller can be found in [1, 2]. Here, the parameters are chosen to be

	\(\bar{\gamma} = 0\)

	\(\bar{\alpha} = I\)

with I the identity matrix.

	Parameters

	
	D0matrix-like
	inertia matrix with numerical values. The matrix should be positive definite and symmetric.

	C0matrix-like
	linear damping matrix with numerical values. The matrix should be positive definite and symmetric.

	K0matrix-like
	linear stiffness matrix with numerical values. The matrix should be positive definite and symmetric.

	C1matrix-like
	nonlinear function’s constant matrix with numerical values.

	fmatrix-like
	nonlinear functions containing lambda functions.

	NAmatrix-like
	the numerical multipliers of the position feedback variables.

	NBmatrix-like
	the numerical multipliers of the velocity feedback variables.

	nonlinearity_typestring
	the nonlinear part acts on the state or the derivative of the state of the dynamic controller. The only options are `stiffness’ and `damping’.

References

[1] L. Luyckx, The nonlinear control of underactuated mechanical systems. PhD thesis, UGent, Ghent, Belgium, 5 2006.

[2] M. Loccufier, “Stabilization and set-point regulation of underactuated mechanical systems”, Journal of Physics: Conference Series, 2016, vol. 744, no. 1, p.012065.

Examples

	
	An Euler-Lagrange controller with two states, the input is the minimal state of a BasicSystem `sys’ and the nonlinearity is acting on the position variable of the Euler-Lagrange controller’s state:
	>>> from sympy import atan
>>> D0 = [[1, 0], [0, 1.5]]
>>> C0 = [[25, 0], [0, 35]]
>>> K0 = [[1, 0], [0, 1]]
>>> C1 = [[0.5, 0], [0, 0.5]]
>>> s_star = 0.01
>>> f0 = 10
>>> f1 = 1
>>> f2 = (f0 - f1)*s_star
>>> func = lambda x: f1 * x + f2 * atan((f0 - f1)/f2 * x)
>>> f = [[func], [func]]
>>> NA = [[0, 0], [0, 0]]
>>> NB = [[3, 0], [2.5, 0]]
>>> contr = EulerLagrangeController(D0, C0, K0, C1, f, NA, NB, sys.minimal_states, nonlinearity_type='stiffness')

	Attributes

	
	D0inertia_matrix
	Inertia forces.

	C0damping_matrix
	Damping and Coriolis forces.

	K0stiffness_matrix
	Elastic en centrifugal forces.

	C1nonlinear_coefficient_matrix
	Coëfficient of the nonlinear functions.

	typenl_stiffness
	A boolean indicating whether a nonlinear stiffness (True) or damping (False) is present.

	nlnonlinear_fcts
	Nonlinear functions of the controller.

	nl_callnonlinear_fcts_callable
	Callable lambda functions of the nonlinear functions.

	NAgain_inputs
	Coëfficients of the position inputs.

	NBgain_dinputs
	Coëfficients of the velocity inputs.

	inputssympy array of dynamicsymbols
	input variables.

	dinputssympy array of dynamicsymbols
	derivative of the input array

	statessympy array of dynamicsymbols
	state variables.

Methods

	check_symmetry(matrix)

	Check if matrix is symmetric.

	controllability_linear(A, B)

	Controllability check of two matrices using the Kalman rank condition for time-invariant linear systems [1].

	convert_to_dynamic_controller()

	The Euler-Lagrange formalism is transformed to the state and output equation notation of the DynamicController class.

	create_variables([input_diffs, states])

	Returns a tuple with all variables.

	define_controller(A, B, C, f, eta, phi)

	Define the Dynamic controller given by the differential equations:

	hurwitz(matrix)

	Check whether a time-invariant matrix is Hurwitz.

	linearize(working_point_states[, …])

	In many cases a nonlinear system is observed around a certain working point.

	observability_linear(A, C)

	Observability check of two matrices using the Kalman rank condition for time-invariant linear systems [1].

	parallel(contr_append)

	A controller is generated which is the result of a parallel connection of two controllers.

	series(contr_append)

	A controller is generated which is the result of a serial connection of two controllers.

	simulation(tspan[, number_of_samples, …])

	Simulates the system in various conditions.

	check_positive_definite

	

	create_states

	

	
check_positive_definite(matrix: sympy.matrices.dense.MutableDenseMatrix)

	

	
check_symmetry(matrix) → bool

	Check if matrix is symmetric. Returns a bool.

	
convert_to_dynamic_controller()

	The Euler-Lagrange formalism is transformed to the state and output equation notation of the DynamicController class.

	
create_states(size: int, level: int = 0)

	

	
property damping_matrix

	!! processed by numpydoc !!

	
property gain_dinputs

	!! processed by numpydoc !!

	
property gain_inputs

	!! processed by numpydoc !!

	
property inertia_matrix

	!! processed by numpydoc !!

	
property nonlinear_coefficient_matrix

	!! processed by numpydoc !!

	
property nonlinear_fcts

	!! processed by numpydoc !!

	
property nonlinear_fcts_callable

	!! processed by numpydoc !!

	
property stiffness_matrix

	!! processed by numpydoc !!

Closed Loop

Basis

	
class nlcontrol.closedloop.feedback.ClosedLoop(system=None, controller=None)

	Bases: object

The object contains a closed loop configuration using BlockDiagram objects of the simupy module. The closed loop systems is given by the following block scheme:

[image: ../_images/aafig-7cb4f916cab1da65e8177f820a8059e6f764922e.svg]
	Parameters

	
	systemSystembase or list of Systembase
	A state-full or state-less system. The number of inputs should be equal to the number of controller outputs.

	controllerControllerBase or list of ControllerBase
	A state-full or state-less controller. The number of inputs should be equal to the number of system outputs.

Examples

	
	Create a closed-loop object of SystemBase object ‘sys’, which uses the Euler-Lagrange formulation, and ControllerBase object ‘contr’ containing a PID and a DynamicController object in parallel.
	>>> from nlcontrol import PID, DynamicController, EulerLagrange
>>> $
>>> # Define the system:
>>> states = 'x1, x2'
>>> inputs = 'u1, u2'
>>> sys = EulerLagrange(states, inputs)
>>> x1, x2, dx1, dx2, u1, u2, du1, du2 = sys.create_variables(input_diffs=True)
>>> M = [[1, x1*x2],
 [x1*x2, 1]]
>>> C = [[2*dx1, 1 + x1],
 [x2 - 2, 3*dx2]]
>>> K = [x1, 2*x2]
>>> F = [u1, 0]
>>> sys.define_system(M, C, K, F)
>>> $
>>> # Define the DynamicController controller:
>>> st = 'z1, z2'
>>> dyn_contr = DynamicController(states=st, inputs=sys.minimal_states)
>>> z1, z2, z1dot, z2dot, w, wdot = contr.create_variables()
>>> a0, a1, k1 = 12.87, 6.63, 0.45
>>> b0 = (48.65 - a1) * k1
>>> b1 = (11.79 - 1) * k1
>>> A = [[0, 1], [-a0, -a1]]
>>> B = [[0], [1]]
>>> C = [[b0], [b1]]
>>> f = lambda x: x**2
>>> eta = [[w + wdot], [(w + wdot)**2]]
>>> phi = [[z1], [z2dot]]
>>> contr.define_controller(A, B, C, f, eta, phi)
>>> $
>>> # Define the PID:
>>> kp = 1
>>> kd = 1
>>> ksi0 = [kp * x1, kp * x2]
>>> psi0 = [kd * dx1, kd * dx2]
>>> pid = PID(ksi0, None, psi0, inputs=sys.minimal_states)
>>> $
>>> # Create the controller:
>>> contr = dyn_contr.parallel(pid)
>>> $
>>> # Create a closed-loop object:
>>> CL = ClosedLoop(sys, contr)

	Attributes

	
	backward_system
	ControllerBase

	forward_system
	Systembase

Methods

	create_block_diagram([forward_systems, …])

	Create a closed loop block diagram with negative feedback.

	create_closed_loop_system()

	Create a SystemBase object of the closed-loop system.

	linearize(working_point_states)

	In many cases a nonlinear closed-loop system is observed around a certain working point.

	simulation(tspan, initial_conditions[, …])

	Simulates the closed-loop in various conditions.

	
property backward_system

	ControllerBase

The controller in the backward path of the closed loop.

	
create_block_diagram(forward_systems: list = None, backward_systems: list = None)

	Create a closed loop block diagram with negative feedback. The loop contains a list of SystemBase objects in the forward path and ControllerBase objects in the backward path.

	Parameters

	
	forward_systemslist, optional (at least one system should be present in the loop)
	A list of SystemBase objects. All input and output dimensions should match.

	backward_systems: list, optional (at least one system should be present in the loop)
	A list of ControllerBase objects. All input and output dimensions should match.

	Returns

	
	BDa simupy’s BlockDiagram object
	contains the configuration of the closed-loop.

	indicesdict
	information on the ranges of the states and outputs in the output vectors of a simulation dataset.

	
create_closed_loop_system()

	Create a SystemBase object of the closed-loop system.

	Returns

	
	systemSystemBase
	A Systembase object of the closed-loop system.

	
property forward_system

	Systembase

The system in the forward path of the closed loop.

	
linearize(working_point_states)

	In many cases a nonlinear closed-loop system is observed around a certain working point. In the state space close to this working point it is save to say that a linearized version of the nonlinear system is a sufficient approximation. The linearized model allows the user to use linear control techniques to examine the nonlinear system close to this working point. A first order Taylor expansion is used to obtain the linearized system. A working point for the states needs to be provided.

	Parameters

	
	working_point_stateslist or int
	the state equations are linearized around the working point of the states.

	Returns

	
	sys_lin: SystemBase object
	with the same states and inputs as the original system. The state and output equation is linearized.

	sys_control: control.StateSpace object
	

Examples

	
	Print the state equation of the linearized closed-loop object of `CL’ around the state’s working point x[1] = 1 and x[2] = 5:
	>>> CL_lin, CL_control = CL.linearize([1, 5])
>>> print('Linearized state equation: ', CL_lin.state_equation)

	
simulation(tspan, initial_conditions, plot=False, custom_integrator_options=None)

	Simulates the closed-loop in various conditions. It is possible to impose initial conditions on the states of the system. The results of the simulation are numerically available. Also, a plot of the states and outputs is available. To simulate the system scipy’s ode is used.
TODO: output_signal -> a disturbance on the output signal.

	Parameters

	
	tspanfloat or list-like
	the parameter defines the time vector for the simulation in seconds. An integer indicates the end time. A list-like object with two elements indicates the start and end time respectively. And more than two elements indicates at which time instances the system needs to be simulated.

	initial_conditionsint, float, list-like object
	the initial conditions of the states of a statefull system. If none is given, all are zero, default: None

	plotboolean, optional
	the plot boolean decides whether to show a plot of the inputs, states, and outputs, default: False

	custom_integrator_optionsdict, optional (default: None)
	Specify specific integrator options to pass to integrator_class.set_integrator (scipy ode). The options are ‘name’, ‘rtol’, ‘atol’, ‘nsteps’, and ‘max_step’, which specify the integrator name, relative tolerance, absolute tolerance, number of steps, and maximal step size respectively. If no custom integrator options are specified the DEFAULT_INTEGRATOR_OPTIONS are used:

{
 "name": "dopri5",
 "rtol": 1e-6,
 "atol": 1e-12,
 "nsteps": 500,
 "max_step": 0.0
}

	Returns

	
	tarray
	time vector

	datatuple
	four data vectors, the states and the outputs of the systems in the forward path and the states and outputs of the systems in the backward path.

Examples

	
	A simulation of 5 seconds of the statefull SystemBase object ‘sys’ in the forward path and the statefull ControllerBase object `contr’ in the backward path for a set of initial conditions [x0_0, x1_0] and plot the results:
	>>> CL = ClosedLoop(sys, contr)
>>> t, data = CL.simulation(5, [x0_0, x1_0], custom_integrator_options={'nsteps': 1000}, plot=True)
>>> (x_p, y_p, x_c, y_c) = data

Building blocks

	
nlcontrol.closedloop.blocks.gain_block(value, dim)

	Multiply the output of system with dimension ‘dim’ with a contant value ‘K’.

[image: ../_images/aafig-6128b4ef2f5bd83f312f820d52a9eb1d844b34ce.svg]
	Parameters

	
	valueint or float
	Multiply the input signal with a value.

	dimint
	

	Returns

	
	simupy's MemorylessSystem
	

Examples

	A negative gain block with dimension 3:
	>>> negative_feedback = gain_block(-1, 3)

Want to contribute?

As the module is open-source, contributions are highly appreciated. If you are not feeling confident enough to dive into the code, just add an issue on the github page [https://github.com/jjuch/nlcontrol/issues]

contents:

	Contribute - Git workflow
	Commit message

	Initiate your work repository

	Update your local master against upstream master

	Working with a feature branch

	Things you should NOT do

Contribute - Git workflow

Contents

	Contribute - Git workflow

	Commit message

	Initiate your work repository

	Update your local master against upstream master

	Working with a feature branch

	Things you should NOT do

This is just a practical guide that can help you making contributions to the nlcontrol toolbox. It is very basic, so don’t expect too much.

Commit message

Refer to a component name, give a short description, and add a reference to the issue, if relevant (with ‘fix #<number>’ it means it is fixed)

COMPONENT_NAME: fix *some_text* (fix #1234)

More details here...

Initiate your work repository

Fork the jjuch/nlcontrol from github UI, and then

git clone https://github.com/jjuch/nlcontrol.git
cd nlcontrol
git remote add my_user_name https://github.com/my_user_name/nlcontrol.git

Update your local master against upstream master

In command line do the following

git checkout master
git fetch origin
Be careful: this will remove all local changes you might have done now
git reset --hard origin/master

Working with a feature branch

In command line do the following

git checkout master
(potentially update your local master against upstream, as described above)
git checkout -b my_new_feature_branch

do something. For instance:
git add my_new_file
git add my_modified_message
git rm old_file
git commit -a

you may need to resynchronize against master if you need some bugfix
or new capability that has been added since you created your branch
git fetch origin
git rebase origin/master

At end of your work, make sure history is reasonable by folding non
significant commits into a consistent set
git rebase -i master (use 'fixup' for example to merge several commits together,
and 'reword' to modify commit messages)

or alternatively, in case there is a big number of commits and marking
all them as 'fixup' is tedious
git fetch origin
git rebase origin/master
git reset --soft origin/master
git commit -a -m "Put here the synthetic commit message"

push your branch
git push my_user_name my_new_feature_branch
From GitHub UI, issue a pull request

If the pull request discussion checks ‘requires changes’, commit locally and push. To get a clean history, you may need to git rebase -i master, in which case you will have to force-push your branch with git push -f my_user_name my_new_feature_branch.

Things you should NOT do

(For anyone with push rights to https://github.com/jjuch/nlcontrol,) Never modify a commit or the history of anything that has been committed to https://github.com/jjuch/nlcontrol

Disclaimer: Thank you GDAL repo for the inspiration.

License

Copyright (c) 2020, Jasper Juchem

All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the Ghent University, Ghent nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contact

Email: Jasper_Juchem@hotmail.com

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nlcontrol	

 	
 	
 nlcontrol.closedloop.blocks	

 	
 	
 nlcontrol.closedloop.feedback	

 	
 	
 nlcontrol.systems.controllers.basic	

 	
 	
 nlcontrol.systems.controllers.controller	

 	
 	
 nlcontrol.systems.controllers.eulaC	

 	
 	
 nlcontrol.systems.eula	

 	
 	
 nlcontrol.systems.system	

 	
 	
 nlcontrol.systems.utils	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | W

B

 	
 	backward_system() (nlcontrol.closedloop.feedback.ClosedLoop property)

 	
 	block_configuration() (nlcontrol.systems.system.SystemBase property)

C

 	
 	check_positive_definite() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController method)

 	check_symmetry() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController method)

 	(nlcontrol.systems.eula.EulerLagrange method)

 	ClosedLoop (class in nlcontrol.closedloop.feedback)

 	controllability_linear() (nlcontrol.systems.controllers.eulaC.DynamicController method)

 	ControllerBase (class in nlcontrol.systems.controllers.controller)

 	
 	convert_to_dynamic_controller() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController method)

 	create_block_diagram() (nlcontrol.closedloop.feedback.ClosedLoop method)

 	create_closed_loop_system() (nlcontrol.closedloop.feedback.ClosedLoop method)

 	create_state_equations() (nlcontrol.systems.eula.EulerLagrange method)

 	create_states() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController method)

 	create_variables() (nlcontrol.systems.eula.EulerLagrange method)

 	(nlcontrol.systems.system.SystemBase method)

D

 	
 	D_action() (nlcontrol.systems.controllers.basic.PID property)

 	damping_matrix() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

 	(nlcontrol.systems.eula.EulerLagrange property)

 	
 	define_controller() (nlcontrol.systems.controllers.eulaC.DynamicController method)

 	define_PID() (nlcontrol.systems.controllers.basic.PID method)

 	define_system() (nlcontrol.systems.eula.EulerLagrange method)

 	DynamicController (class in nlcontrol.systems.controllers.eulaC)

E

 	
 	EulerLagrange (class in nlcontrol.systems.eula)

 	
 	EulerLagrangeController (class in nlcontrol.systems.controllers.eulaC)

F

 	
 	force_vector() (nlcontrol.systems.eula.EulerLagrange property)

 	
 	forward_system() (nlcontrol.closedloop.feedback.ClosedLoop property)

G

 	
 	gain_block() (in module nlcontrol.closedloop.blocks)

 	
 	gain_dinputs() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

 	gain_inputs() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

H

 	
 	hurwitz() (nlcontrol.systems.controllers.eulaC.DynamicController method)

I

 	
 	I_action() (nlcontrol.systems.controllers.basic.PID property)

 	
 	inertia_matrix() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

 	(nlcontrol.systems.eula.EulerLagrange property)

L

 	
 	linearize() (nlcontrol.closedloop.feedback.ClosedLoop method)

 	(nlcontrol.systems.system.SystemBase method)

M

 	
 	
 module

 	nlcontrol.closedloop.blocks

 	nlcontrol.closedloop.feedback

 	nlcontrol.systems.controllers.basic

 	nlcontrol.systems.controllers.controller

 	nlcontrol.systems.controllers.eulaC

 	nlcontrol.systems.eula

 	nlcontrol.systems.system

 	nlcontrol.systems.utils

N

 	
 	
 nlcontrol.closedloop.blocks

 	module

 	
 nlcontrol.closedloop.feedback

 	module

 	
 nlcontrol.systems.controllers.basic

 	module

 	
 nlcontrol.systems.controllers.controller

 	module

 	
 nlcontrol.systems.controllers.eulaC

 	module

 	
 	
 nlcontrol.systems.eula

 	module

 	
 nlcontrol.systems.system

 	module

 	
 nlcontrol.systems.utils

 	module

 	nonlinear_coefficient_matrix() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

 	nonlinear_fcts() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

 	nonlinear_fcts_callable() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

O

 	
 	observability_linear() (nlcontrol.systems.controllers.eulaC.DynamicController method)

 	
 	output_equation() (nlcontrol.systems.system.SystemBase property)

P

 	
 	P_action() (nlcontrol.systems.controllers.basic.PID property)

 	parallel() (nlcontrol.systems.controllers.controller.ControllerBase method)

 	(nlcontrol.systems.system.SystemBase method)

 	
 	PID (class in nlcontrol.systems.controllers.basic)

R

 	
 	read_simulation_result_from_csv() (in module nlcontrol.systems.utils)

S

 	
 	series() (nlcontrol.systems.controllers.controller.ControllerBase method)

 	(nlcontrol.systems.system.SystemBase method)

 	simulation() (nlcontrol.closedloop.feedback.ClosedLoop method)

 	(nlcontrol.systems.system.SystemBase method)

 	
 	state_equation() (nlcontrol.systems.system.SystemBase property)

 	stiffness_matrix() (nlcontrol.systems.controllers.eulaC.EulerLagrangeController property)

 	(nlcontrol.systems.eula.EulerLagrange property)

 	system() (nlcontrol.systems.system.SystemBase property)

 	SystemBase (class in nlcontrol.systems.system)

W

 	
 	write_simulation_result_to_csv() (in module nlcontrol.systems.utils)

 Where is this present???

 nav.xhtml

 Table of Contents

 		
 Welcome to nlcontrol’s documentation!

 		
 Get Started

 		
 Installation

 		
 pip

 		
 Current Release

 		
 Past Releases

 		
 Development Source

 		
 Usage

 		
 API

 		
 The Idea

 		
 The Docs

 		
 Systems

 		
 Controllers

 		
 Closed Loop

 		
 Want to contribute?

 		
 Contribute - Git workflow

 		
 Commit message

 		
 Initiate your work repository

 		
 Update your local master against upstream master

 		
 Working with a feature branch

 		
 Things you should NOT do

 		
 License

 		
 Contact

_static/minus.png

_static/plus.png

_static/file.png

